Shelby County Schools Science Vision

Shelby County Schools' vision of science education is to ensure that from early childhood to the end of the 12th grade, all students have heightened curiosity and an increased wonder of science; possess sufficient knowledge of science and engineering to engage in discussions; are able to learn and apply scientific and technological information in their everyday lives; and have the skills such as critical thinking, problem solving, and communication to enter careers of their choice, while having access to connections to science, engineering, and technology.

To achieve this, Shelby County Schools has employed The Tennessee Academic Standards for Science to craft meaningful curricula that is innovative and provide a myriad of learning opportunities that extend beyond mastery of basic scientific principles.

Introduction

In 2014, the Shelby County Schools Board of Education adopted a set of ambitious, yet attainable goals for school and student performance. The District is committed to these goals, as further described in our strategic plan, Destination 2025. In order to achieve these ambitious goals, we must collectively work to provide our students with high quality standards aligned instruction. The Tennessee Academic Standards for Science provide a common set of expectations for what students will know and be able to do at the end of each grade, can be located in the <u>Tennessee Science Standards Reference</u>. Tennessee Academic Standards for Science are rooted in the knowledge and skills that students need to succeed in post-secondary study or careers. While the academic standards establish desired learning outcomes, the curricula provides instructional planning designed to help students reach these outcomes. The curriculum maps contain components to ensure that instruction focuses students toward college and career readiness. Educators will use this guide and the standards as a roadmap for curriculum and instruction. The sequence of learning is strategically positioned so that necessary foundational skills are spiraled in order to facilitate student mastery of the standards.

Our collective goal is to ensure our students graduate ready for college and career. Being College and Career Ready entails, many aspects of teaching and learning. We want our students to apply their scientific learning in the classroom and beyond. These valuable experiences include students being facilitators of their own learning through problem solving and thinking critically. The Science and Engineering Practices are valuable tools used by students to engage in understanding how scientific knowledge develops. These practices rest on important "processes and proficiencies" with longstanding importance in science education. The science maps contain components to ensure that instruction focuses students toward understanding how science and engineering can contribute to meeting many of the major challenges that confront society today. The maps are centered around five basic components: the Tennessee Academic Standards for Science, Science and Engineering Practices, Disciplinary Core Ideas, Crosscutting Concepts, and Phenomena.

The Tennessee Academic Standards for Science were developed using the National Research Council's 2012 publication, <u>A Framework for K-12 Science Education</u> as their foundation. The framework presents a new model for science instruction that is a stark contrast to what has come to be the norm in science classrooms. Thinking about science had become memorizing concepts and solving mathematical formulae. Practicing science had become prescribed lab situations with predetermined outcomes. The framework proposes a three-dimensional approach to science education that capitalizes on a child's natural curiosity. The Science Framework for K-12 Science Education provides the blueprint for developing the effective science practices. The Framework expresses a vision in science education that requires students to operate at the nexus of three dimensions of learning: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. The Framework identified a small number of disciplinary core ideas that all students to learn these disciplinary core ideas in the context of science and engineering practices. The importance of combining Science and Engineering Practices, Crosscutting Concepts and engineering practices. The importance of combining Science and Engineering Practices, Crosscutting Concepts and Disciplinary Core Ideas is stated in the Framework as follows:

Standards and performance expectations that are aligned to the framework must take into account that students cannot fully understand scientific and engineering ideas without engaging in the practices of inquiry and the discourses by which such ideas are developed and refined. At the same time, they cannot learn or show competence in practices except in the context of specific content. (NRC Framework, 2012, p. 218)

To develop the skills and dispositions to use scientific and engineering practices needed to further their learning and to solve problems, students need to experience instruction in which they use multiple practices in developing a particular core idea and apply each practice in the context of multiple core ideas. We use the term "practices" instead of a term such as "skills" to emphasize that engaging in scientific investigation requires not only skill but also knowledge that is specific to each practice. Students in grades K-12 should engage in all eight practices over each grade band. Crosscutting concepts have application across all domains of science. As such, they are a way of linking the different domains of science. Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas. There are seven crosscutting concepts that bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering. Their purpose is to help students deepen their understanding of the disciplinary core ideas and develop a coherent and scientifically based view of the world.

The map is meant to support effective planning and instruction to rigorous standards. It is not meant to replace teacher planning, prescribe pacing or instructional practice. In fact, our goal is not to merely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. Teachers who are knowledgeable about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are best-positioned to make decisions about how to support student learning toward such mastery. Teachers are therefore expected--with the support of their colleagues, coaches, leaders, and other support providers--to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related best practices. However, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning are non-negotiable. We must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support of literacy and language learning across the content areas.

tity

Science and Engineering	Disciplinary Core Ideas	Crosscutting Concept
. Asking questions & defining	Physical Science PS 1: Matter & its interactions PS 2: Motion & stability: Forces &	1. Patterns
Developing & using models	PS 3: Energy PS 4: Waves & their applications in technologies for information transfer	2. Cause & effect
. Planning & carrying out vestigations	Life Sciences LS 1: From molecules to organisms: structures & processes	3. Scale, proportion, & quan
Analyzing & interpreting ata	LS 2: Ecosystems: Interactions, energy, & dynamics LS 3: Heredity: Inheritance &	4. Systems & system model
Jsing mathematics & nputational thinking	LS 4: Biological evaluation: Unity & diversity	5. Energy & matter
Constructing explanations & esigning solutions	Earth & Space Sciences ESS 1: Earth's place in the universe ESS 2: Earth's systems ESS 3: Earth & human activity	6. Structure & function
. Engaging in argument from vidence	Engineering, Technology, & the Application of Science ETS 1: Engineering design	7. Stability & change
. Obtaining, evaluating, & ommunicating information	ETS 2: Links among engineering, technology, science, & society	

Learning Progression

At the end of the elementary science experience, students can observe and measure phenomena using appropriate tools. They are able to organize objects and ideas into broad concepts first by single properties and later by multiple properties. They can create and interpret graphs and models that explain phenomena. Students can keep notebooks to record sequential observations and identify simple patterns. They are able to design and conduct investigations, analyze results, and communicate the results to others. Students will carry their curiosity, interest and enjoyment of the scientific world view, scientific inquiry, and the scientific enterprise into middle school.

At the end of the middle school science experience, students can discover relationships by making observations and by the systematic gathering of data. They can identify relevant evidence and valid arguments. Their focus has shifted from the general to the specific and from the simple to the complex. They use scientific information to make wise decision related to conservation of the natural world. They recognize that there are both negative and positive implications to new technologies.

As an SCS graduate, former students should be literate in science, understand key science ideas, aware that science and technology are interdependent human enterprises with strengths and limitations, familiar with the natural world and recognizes both its diversity and unity, and able to apply scientific knowledge and ways of thinking for individual and social purposes.

Structure of the Standards

• Grade Level/Course Overview: An overview that describes that specific content and themes for each grade level or high school course.

- Disciplinary Core Idea: Scientific and foundational ideas that permeate all grades and connect common themes that bridge scientific disciplines.
- Standard: Statements of what students can do to demonstrate knowledge of the conceptual understanding. Each performance indicator includes a specific science and engineering practice paired with the content knowledge and skills that students should demonstrate to meet the grade level or high school course standards.

Purpose of Science Curriculum Maps

This map is a guide to help teachers and their support providers (e.g., coaches, leaders) on their path to effective, college and career ready (CCR) aligned instruction and our

pursuit of Destination 2025. It is a resource for organizing instruction around the Tennessee Academic Standards for Science, which define what to teach and what students need to learn at each grade level. The map is designed to reinforce the grade/course-specific standards and content (scope) and provides suggested sequencing, pacing, time frames, and aligned resources. Our hope is that by curating and organizing a variety of standards-aligned resources, teachers will be able to spend less time wondering what to teach and searching for quality materials (though they may both select from and/or supplement those included here) and have more time to plan, teach, assess, and reflect with colleagues to continuously improve practice and best meet the needs of their students. The map is meant to support effective planning and instruction to rigorous standards. It is not meant to replace teacher planning, prescribe pacing or instructional practice. In fact, our goal is not to merely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. Teachers who are knowledgeable about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are best-positioned to make decisions about how to support student learning toward such mastery. Teachers are therefore expected---with the support of their colleagues, coaches, leaders, and other support providers--to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related best practices. However, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning are non-negotiable. We must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support of literacy and language learning a

Physical Science Quarter 3 Curriculum Map Quarter 3 <u>Curriculum Map Feedback</u>									
	Quarter 1		Quarter 2 Quart		arter 3	rter 3		rter 4	
Structures and Routine	Unit 1 Matter	Unit 2 Chemical Reactions	Unit 3 Motions and Stability	Unit 4 Energy and Machines	Unit 5 Heat and Electricity	Unit 6 Nuclear Energy	Unit 7 Waves	Unit 8 Electromagnetic Radiation	
Week 1	3 Weeks	5 Weeks	9 Weeks	4 Weeks	3 Weeks	2 Weeks	4 Weeks	5 Weeks	
	UNIT 4 Energy and Machines [4 weeks]								
				Overarching Question	1				
			How	is energy transferred and co	nserved?				
Unit	Lesso	n Length	Essentia	al Question(s)			Vocabulary		
Unit 4 Energy 5 days and Machines		 What is the difference between kinetic energy and potential energy? How can you calculate kinetic energy? What are some different forms of potential energy? How can you calculate gravitational potential energy? 		Energy, system, kinetic energy, potential energy, elastic potential energy, chemical potential energy, gravitational potential energy					
Standards and Related Background Information			Instruc	Instructional Resources					
DCI PSCI.PS3: Energy Standards PSCI.PS3.1 Identify and give examples of the various forms of energy (kinetic, gravitational potential, elastic potential) and solve mathematical problems regarding the work-energy theorem and power. Explanation and Support of Standard In 6.PS3 students were introduced to the various types of energy and mechanisms for their transformations. Students should now be able to quantify		 Learning Outcomes Understand that when a force cau object. Use math calculate work (<i>V</i> Understand the requals its change Understand kinet an object due to a single due to an mathematical compenergy (PE = m x genergy (PE = m x generg)) 	work is done on an object ises a displacement of the ematical computation to V = Fd). The work done on a body in kinetic energy. The energy is the energy of its motion. The computation to calculate $KE = \frac{1}{2} mv2$). The potential energy is stored object's position. Use putation to calculate potential g x h).	Curricular I Glencoe Engage Khan Acader Khan Acader Bozeman Sci Quick Demo Quick Demo Gravitationa Section 2 re Video Lab E resources ru	Resources Text Physical Scien Ener ny Introduction to ny Work and Ener of Gravitational I I Potential Ener sources run tin Souncing Balls J un time 3:56 mi	tbook Resources ince, Chapter 4 Section rgy pps. 114-119 o Work and Energy ergy (Part 2) of Energy y TE pp. 116 Potential Energy TE orgy Animation found ine 2:26 mins. Animation found in Cons.	on 2: Describing pp. 118 I in Chapter 4 Chapter 4 Section 2		

the total energy of a system as well as quantify each different type of energy in a system. Energy is an abstract concept that does not have a physical form. It is a substance-like quantity that is recognized to be conserved as a system change. Calculations present an opportunity to observe that potential energies are due to the positions of objects within a field, while kinetic energy is based on an object's mass and motion. Students can evaluate the total energy of a system by imagining that there are different types of energy storage accounts, just as money can be stored in different accounts. Energy can be transferred into or out of any of these accounts. Three different processes can account for all energy changes: working, heating, and radiating. In energy storage due to field effects, such as gravitational or electrostatic fields, the field itself stores the potential energy and not the object in the field. Students should understand that a given task will require a certain minimum amount of energy. In accordance with the work-energy theorem, this would be described as work done on the system. Power incorporates a rate element into this discussion.

Suggested Science and Engineering Practices

Use mathematics and computational thinking: To solve problems for work (W = f x d) and power (P = W/t).

Understand that potential energy can be classified into different types (e.g., gravitational, chemical, and elastic).

Use mathematical computation to demonstrate how the work energy theorem states that the work done by all forces acting on an object equals the change in the object's kinetic energy ($W = \Delta KE = \frac{1}{2} \text{ mv}_{f2} - \frac{1}{2} \text{ mv}_{f2}$).

Explain how work transfers energy from one place to another or from one form to another.

Understand the unit of work and energy is Joules (J).

Suggested Phenomenon

•

•

•

•

The moving hammer has kinetic energy and can do work on the puck, which can rise against gravity and ring the bell. (Referencing: Ring-the-bell game)

Explore

MiniLab Interpret Data from a Slingshot p. 117

Explain Solve for Kinetic Energy p. 116 Solve for Gravitational Potential Energy p. 119

Elaborate

Post Reading: Cooperative Project TE pg. 118 Discussion: Riding an Elevator TE pg. 118

Evaluate

Section 2 Review: 20-25 pg. 119 Assessment Process TE pg. 119

Additional Resources

Teach Engineering Curricular Unit: <u>Simple Machines</u> Rube Goldberg Teaching Resources The Physics Classroom Work, Energy, and Power Reasoning's and solutions of Newton's laws

ACT Standard(s) Connection

IOD 403. Translate information into a table, graph, or diagram

ACT Content Connection(s) Heat and work (PS)

Kinetic and potential energy (PS)

Q3 Physical Science

Shelby County Schools 2019-2020 6 of 24

Ask questions: To determine the various forms of energy present in a given system.	
Suggested Crosscutting Concept	
Energy and Matter	
conservation of mass and energy in	
systems, including systems with inputs	
and outputs.	
Cause and Effect	
Students use cause and effect models at	
one scale to make predictions about the behavior of systems at different scales.	
······································	

	Physical Science Quarter 3 Curriculum Map							
Quarter 3 <u>Curriculum Map Feedback</u>								
Quarter 1			Quarter 2	Qu	arter 3		Q	uarter 4
Structures and Routine	Unit 1 Matter	Unit 2 Chemical Reactions	Unit 3 Motions and Stability	Unit 4 Energy and Machines	Unit 5 Heat and Electricity	Unit 6 Nuclear Energy	Unit 7 Waves	Unit 8 Electromagneti c Radiation
Week 1	3 Weeks	5 Weeks	9 Weeks	4 Weeks	3 Weeks	2 Weeks	4 Weeks	5 Weeks
UNIT 4 Energy and Machines [4 weeks]								
Overarching Question								
How is energy transferred and conserved?								
Unit	Lessor	n Length	Essential Question(s)		Vocabulary			
Unit 4 Energy and Machines	5 0	lays	 What is the law of con What is mechanical e Why is mechanical er conserved? How are power and e 	law of conservation of energy, mechanical energy, power, horsepower, watts				
Standards and Related Background Information			Instructional Focus		Instructional Resources			95
Physical Science								Shelby County Scho

DCI	PS.3.5: Learning Outcomes	Curricular Resources
PSCI.PS3: Energy	 Understand that energy cannot be created nor 	
	destroyed.	Textbook Resources
Standard(s)	 Understand that mechanical energy is equal to 	Glencoe Physical Science Chapter 4, Section 3:
PSCI.PS3. 5 Investigate the relationships among	the total kinetic energy and potential energy in	Conservation of Energy pps. 120 - 129
kinetic, potential, and total energy within a	a system. Since energy is conserved in a	
closed system (the law of conservation of	system, the mechanical energy must remain	Engage
energy).	the same, but the amounts of kinetic and	Virtual Lab Energy Conversions How is energy
in conjunction with	potential energy can change as one form gets	converted from one form to another?
PSCI.PS3.4 Collect data and present your	transformed into another.	Energy Transformation Virtual Lab Handout
findings regarding the law of conservation of	 Use the formulas for mechanical energy (ME = DE L/C) kinetic energy E =1/2 	
energy and the efficiency mechanical	PE + KE), kinetic energy $E_k = 1/2mv_2$, and	
advantage and power of the refined device	potential energy ($PE - m \times g \times n$) to solve	Applying Practices Modeling Changes in Energy go
auranage, and perfer of the formed device.	air resistance) to determine the amounts of	to the ConnectEd resources tab
	notential and kinetic energy of objects as they	
Explanation and Support of Standard	are lifted or fall	Applying Practices Farth Power go to the ConnectEd
An understanding of conservation of energy	 Understand that Initial mechanical energy 	resources tab Students will design build and refine a
should lead to conversations about the efficiency	equals final mechanical energy (in the	device that converts energy from one form to another
of a device. A well-designed device should	absence of friction).	using materials provided by their teacher. Energy
utilize as much of the available energy as		conversions can be simple, such as the transformation
nossible for the desired task. Other energy will	PS.3.4: Learning Outcomes	of potential energy to kinetic energy when dropping an
be converted to forms, such as heat and noise	Understand the law of conservation of energy	object, to more complex energy conversions, such as
which may not be immediately useful based on	states that the total amount of energy remains	the transformation of the potential chemical energy in
the intended use for the device. Students can	constant in an isolated system (i.e., energy is	gasoline and oxygen into mechanical energy that
investigate kinetic potential and total energy	neither created nor destroyed but it can be	accelerates a car in an internal combustion engine
within a closed system using various	transformed from one type to another).	
phenomena for example the Dropping the Ball	 Understand efficiency is the ratio of useful 	
and Pendulum Swing	work output to total input.	Demo Marble Energy p. 124 TE The purpose is to
and rendalith owing.	$Efficiency = \frac{dsej ut work output}{total work input} \times 100$	demonstrate the conservation of mechanical energy
Misconceptions		Needed Materials: 2 m of plastic tubing, ring stands
Students might think that energy can be	 Understand mechanical advantage is the ratio of the force everted by a simple machine to 	with clamps (2) marble
converted into things other than energy or	the force exercised by a simple machine to	
that other things can be converted into	The distance a load will be moved will be a	Minil ab Calculate Your Power p. 126
energy. Energy can only be converted into	fraction of the distance through which effort is	
other forms of energy, and other things	applied.	Solve for Power p. 126
cannot be converted into energy.	Understand power is the rate at which work is	
 Some students might not realize that when 	done or the rate of energy transfer.	Explore
the bob of a pendulum reaches its		
Physical Science		Shelby County S

 maximum height, it momentarily stops, and when it is at its lowest part of its swing, its velocity is highest. Understand machines with different power ratings do the same amount of work in different twee intervals. Suggested Science and Engineering Practice Develop and use models: To explain energy transfer within a closed system. Suggested: L-O-L charts Use mathematics and computational thinking: To solve for different variables. Design a solution: For given rollercoaster construction plans. Include a rationale for the first hill on a roller-coaster always being the tallest. Plan and carry out an investigation: To determine the effect of length and/or roughness of an inclined plane. Analyze and interpret data: Regarding the mechanical advantage and efficiency of a simple machine. Obtain, evaluate, and communicate information: Regarding the law of conservation of energy on a refined device. Suggested Crosscutting Concept Understand machines with different power ratings do the same amount of work in different variables. Understand use to friction, not all the work do to the work the mechanical advantage and efficiency of a simple machine. Obtain, evaluate, and communicate information: Regarding the law of conservation of energy on a refined device. Suggested Crosscutting Concept Understand machine is weed to accomplish. Some of the energy and physics?
Systems and System ModelsLaw of Conservation of Energy (Roller CoasterStudents make predictions from models considering assumptions and approximations.Law of Conservation of Energy (Roller CoasterEnergy and MatterDemo) 2:45 minsStudents demonstrate and explain conservation of mass and energy in systems, including systems with inputs and outputs.No limits Coaster 2 Animation 2:44 mins Warning: Animation can cause motion sickness. Twisted Colossus - POV animation 2:43 mins

Physical Science Quarter 3 Curriculum Map Quarter 3 Curriculum Map Feedback

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Structures and Routine Unit 1 Matter Unit 2 Chemical Reactions Unit 3 Motions and Stability Unit 4 Energy and Machines Unit 5 Heat and Electricity Unit 7 Heat and Electricity Unit 7 Waves Unit 7 Electroma Radiat Week 1 3 Weeks 5 Weeks 9 Weeks 4 Weeks 3 Weeks 2 Weeks 4 Weeks 5 Week Unit Lesson Length Essential Question How is energy transferred and conserved? Vocabulary Vocabulary Unit 4 Energy and Machines What is work? Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage. Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage. Unit 4 Energy and Machines 10 days • What is work? Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage. Standards and Related Background Information Instructional Focus Instructional Resources Curricular Resources Standard PSCI.PS3: Design, build, and refine a device within design constraints that has a series of simple machines to transfer • Experiment with selected simple machines Energage Curicular R											
Structures and Routine Unit 1 Matter Unit 2 Chemical Reactions Unit 3 Motions and Stability Unit 4 Energy Machines Unit 5 Heat and Electricity Unit 6 Heat and Electricity Unit 7 Heat and Ele		Quarter 1		Quarter 2		Quarter 3		Qua	rter 4		
Week 1 3 Weeks 5 Weeks 9 Weeks 4 Weeks 3 Weeks 2 Weeks 4 Weeks 5 Weeks Unit 4 Energy and Machines [4 weeks] Overarching Question Overarching Question How is energy transferred and conserved? How is energy transferred and conserved? Vocabulary Unit 4 Lesson Length Essential Question(s) Vocabulary Unit 4 How can work be calculated when force and motion are parallel to each other? How do machines make doing work easier? Work, Joule, applied force, machine, simple machine, comport machine, efficiency, mechanical advantage, and motion are parallel to each other? How do machines make doing work easier? What are mechanical advantage and efficiency? Instructional Focus Instructional Resources Standards and Related Background Information Instructional Focus Instructional Resources Curricular Resources Standard Experiment with selected simple machines to discover the relationship between force and distance. Solve problems related to force, work, and power. Glencoe Physical Science Chapter 4, Section 1: Work and Er ps. 106-112 PSCI.PS3.3 Design, build, and refine a device within design constraints that has a series of simple machines to transfer Solve problems related to force, work, and power. Identify various types of simple machines. Engage	Structures and Routine	Unit 1 Matter	Unit 2 Chemical Reactions	Unit 3 Motions and Stability	Unit 4 Energy and Machines	Unit 5 Heat and Electricity	Unit 6 Nuclear Energy	Unit 7 Waves	Unit 8 Electromagnetic Radiation		
UNIT 4 Energy and Machines [4 weeks] Overarching Question How is energy transferred and conserved? Unit Lesson Length Essential Question(s) Vocabulary Unit 4 Energy and Machines 0 days • What is work? • Work, Joule, applied force, machine, simple machine, comport machine, efficiency, mechanical advantage, and motion are parallel to each other? • Work, Joule, applied force, machine, simple machine, comport machine, efficiency, mechanical advantage, and motion are parallel to each other? • Work, Joule, applied force, machine, simple machine, comport machine, efficiency, mechanical advantage, and motion are parallel to each other? • Work, Joule, applied force, machine, simple machine, comport machine, efficiency, mechanical advantage, and motion are parallel to each other? Standards and Related Background Information Instructional Focus Instructional Resources DCI PSCI.PS3.3 Design, build, and refine a device within design constraints that has a series of simple machines to transfer • Experiment with selected simple machines to discover the relationship between force and distance. • Solve problems related to force, work, and power. Glencoe Physical Science Chapter 4, Section 1: Work and En- pps. 106-112 Engage machines Engage machines Engage	Week 1	3 Weeks	5 Weeks	9 Weeks	4 Weeks	3 Weeks	2 Weeks	4 Weeks	5 Weeks		
Overarching Question How is energy transferred and conserved? Unit Lesson Length Essential Question(s) Vocabulary Unit 4 Energy 10 days • What is work? Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage, and motion are parallel to each other? • Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage, and motion are parallel to each other? • Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage, and motion are parallel to each other? • Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage, and motion are parallel to each other? Standards and Related Background Information Instructional Focus Instructional Resources DCI PSCI.PS3: Energy • Experiment with selected simple machines to discover the relationship between force and distance. • Curricular Resources Standard PSCI.PS3.3 Design, build, and refine a device within design constraints that has a series of simple machines to transfer • Solve problems related to force, work, and power. • Identify various types of simple machines • Identify various types of simple machines Engage <td></td> <td></td> <td></td> <td>UNIT</td> <td>4 Energy and Machin</td> <td>es [4 weeks]</td> <td></td> <td></td> <td></td>				UNIT	4 Energy and Machin	es [4 weeks]					
Unit Lesson Length Essential Question(s) Vocabulary Unit 4 Energy and Machines 10 days • What is work? Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage, and motion are parallel to each other? • Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage, and motion are parallel to each other? Machines • What are mechanical advantage and efficiency? • What are mechanical advantage and efficiency? Standards and Related Background Information Instructional Focus Instructional Resources DCI PSCI.PS3: Energy • Experiment with selected simple machines to discover the relationship between force and distance. • Experiment with selected simple machines to discover the relationship between. Curricular Resources Standard PSCI.PS3.3 Design, build, and refine a device within design constraints that has a series of simple machines to transfer • Experiment with selected simple machines to transfer • Identify various types of simple machines Curricular Resources • Identify various types of simple machines • Identify various types of simple machines Engage		Overarching Question									
Unit Lesson Length Essential Question(s) Vocabulary Unit 4 - What is work? Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage, and motion are parallel to each other? Work, Joule, applied force, machine, simple machine, compo machine, efficiency, mechanical advantage, and motion are parallel to each other? Machines 10 days • What are mechanical advantage and efficiency? Work are mechanical advantage and efficiency? Standards and Related Background Information Instructional Focus Instructional Resources DCI PSCI.PS3: Energy Learning Outcomes • Experiment with selected simple machines to discover the relationship between force and distance. Curricular Resources Glencoe Physical Science Chapter 4, Section 1: Work and Er pps. 106-112 Standard PSCI.PS3: Design, build, and refine a device within design constraints that has a series of simple machines to transfer • Solve problems related to force, work, and power. Glencoe Physical Science Chapter 4, Section 1: Work and Er pps. 106-112	How is energy transferred and conserved?										
Unit 4 • What is work? • Work, Joule, applied force, machine, simple machine, component and motion are parallel to each other? • How can work be calculated when force and motion are parallel to each other? • How do machines make doing work easier? • How do machines make doing work easier? • How do machines make doing work easier? • • What are mechanical advantage and efficiency? • Instructional Focus Instructional Resources DCI PSCI.PS3: Energy • Experiment with selected simple machines to discover the relationship between force and distance. • Solve problems related to force, work, and power. • Glencoe Physical Science Chapter 4, Section 1: Work and Er pps. 106-112 • Identify various types of simple machines to transfer • Identify various types of simple machines Engage	Unit	Lesso	n Length	Essential	Question(s)		V	ocabulary			
Standards and Related Background InformationInstructional FocusInstructional ResourcesDCI PSCI.PS3: EnergyLearning OutcomesStandard PSCI.PS3.3 Design, build, and refine a device within design constraints that has a series of simple machines to transferLearning Outcomes 	Unit 4 Energy and Machines	10	days	 What is work? How can work be and motion are p How do machine easier? What are mecha efficiency? 	e calculated when force parallel to each other? as make doing work nical advantage and	Work, Joule, applied force, machine, simple machine, compound machine, efficiency, mechanical advantage,					
DCI Learning Outcomes PSCI.PS3: Energy • Experiment with selected simple machines to discover the relationship between force and distance. • Experiment with selected simple machines to discover the relationship between force and distance. • Solve problems related to force, work, and power. • Glencoe Physical Science Chapter 4, Section 1: Work and Er pps. 106-112 • Identify various types of simple machines to transfer • Identify various types of simple machines. • Engage	Standards and Related Background Information			Instructi	onal Focus	Instructional Resources					
 energy and/or do mechanical work. Explanation and Support of Standard Students design, build, and refine a device within design constraints. The device could be a Rube Goldberg machine with the following as examples of constraints: Require that their Rube Goldberg machine contain a certain number of steps; Ensure it carries out a specific task; and Make certain it remains within a strict time frame. Recognize the simple machines found a compound machine. Investigate the simple machines found a compound machine. Investigate the factors that determine the speed of an object rolling down a ramp. Solve application problems related to mechanical advantage and the efficiency of simple machines, given appropriate equations (MA=FO/FI and Eff=WO/WI). Design and construct a device with design constraints for example a Rube Goldberg machine. Suggested Phenomenon Pher Interactive Simulation: Ine Ramp Demonstration of simple machines Bozeman Science Energy, Work, and Power Quick Demo Calculate Work pp. 108 Ted Ed How does workwork? - Peter Bohacek Explore Energy of a Bouncing Ball Lab Conservation of Energy Labs – Dropping the Ball Vernier Physical Science – Simple Machines #s 20, 21, 22 Firs Class Levers, Pulleys, and An Inclined Plane Vernier Physics Explorations and Projects - #16 Rube Goldber Machine 	 PSCI.PS3: Energy Standard PSCI.PS3.3 Design, build, and refine a device within design constraints that has a series of simple machines to transfer energy and/or do mechanical work. Explanation and Support of Standard Students design, build, and refine a device within design constraints. The device could be a Rube Goldberg machine with the following as examples of constraints: Require that their Rube Goldberg machine contain a certain number of steps; Ensure it carries out a specific task; and Make certain it remains within a strict time frame.			 Experiment with machines to discubetween force and Solve problems in and power. Identify various the machines. Recognize the sing a compound material acompound material acompound material speed of an objet. Solve application mechanical advara of simple machine equations (MA=F). Design and considering constrain Goldberg machine. 	selected simple cover the relationship and distance. related to force, work, ypes of simple imple machines found in chine. actors that determine the actors that determine the ect rolling down a ramp. In problems related to antage and the efficiency hes, given appropriate FO/FI and Eff=WO/WI). etruct a device with ts for example a Rube he.	Glencoe Phy Engage Phet Interacti Demonstratio Bozeman Sci Quick Demo O Ted Ed How Explore Energy of a B Conservation Vernier Physi Class Levers, Vernier Physi Machine	Textb ysical Science C pr ve Simulation: Ti n of simple mach ence Energy, Wa Calculate Work pr does workwork ouncing Ball Lak of Energy Labs cal Science – Sin Pulleys, and An cs Explorations a	ook Resources hapter 4, Section 1: bs. 106-112 he Ramp hines ork, and Power b. 108 c? - Peter Bohacek c? - Peter Bohacek mple Machines #s 2 Inclined Plane and Projects - #16 R	Work and Energy 0, 21, 22 First Rube Goldberg		

Students develop a plan for the device in which they do the following: Identify what scientific principles provide the basis for the energy conversion design; Identify the forms of energy that will be converted from one form to another in the designed system: Identify losses of energy by the design system to the surrounding environment; Describe the scientific rationale for choices of materials and structure of the device. including how student-generated evidence influenced the design; and Describe that this device is an example of how the application of scientific knowledge and engineering design can increase benefits for modern civilization while decreasing costs and risk. Emphasis is on both qualitative and quantitative evaluations of devices.

Misconceptions

- Increasing Work Students might think that a machine decreases the amount of work necessary to complete a task. This is false. The output work done by a machine never exceeds the work input to the machine. However, a machine can make work easier in three ways. It can change the size of a force, change the distance over which the force acts, and change the direction of a force.
- Efficiency and Mechanical Advantage – Students often confuse efficiency and mechanical

A Rube Goldberg machine displays several key principles, including conservation of energy, conservation of momentum, and ideas about vital forces of an engineered device.

Amazing Rube Goldberg Machines America's Got Talent - Steve Price (aka "Sprice") Shows Off His Complex Rube Goldberg Machine The Lemonade Machine

Explain

Simple Machine Practice

Elaborate

Evaluate

Lab: Mechanical Advantage and Efficiency TE/SE pg. 113 Hands-on Activity: <u>Design Your Own Rube Goldberg Machine</u>

- Timeframe: 2 8 class periods
- Engineer and cartoonist Rube Goldberg is famous for his crazy machines that accomplish everyday tasks in overly complicated ways. Students use their new understanding of types of simple machines to design and build their own Rube Goldberg machines that perform simple tasks in no less than 10 steps.

Additional Resources

Teach Engineering Curricular Unit: <u>Simple Machines</u> Rube Goldberg Teaching Resources The Physics Classroom Work, Energy, and Power Reasoning's and solutions of Newton's laws

ACT Standard(s) Connection IOD 403. Translate information into a table, graph, or diagram

ACT Content Connection(s) Heat and work (PS) Kinetic and potential energy (PS)

Q3 Physical Science

Shelby County Schools 2019-2020 11 of 24 advantage. Both are output to input ratios. Efficiency is a ratio of output work to input work and mechanical advantage is a ratio of output force to input force. Efficiency of a machine must always be less than 1 and mechanical advantage of a machine can be less than 1, equal to 1, or greater than 1.

 Energy Conversions – Students may think that energy can be converted to things other than energy or that other things can be converted into energy.

Suggested Science and Engineering Practice

Construct an explanation and design a solution

Students construct an explanation through the construction of a Rube Goldberg machine using five of the six simple machines to perform a given task.

Suggested Crosscutting Concept Systems and System Models

Students make predictions from models considering assumptions and approximations.

Energy and Matter

Students demonstrate and explain conservation of mass and energy in systems, including systems with inputs and outputs.

	Physical Science Quarter 3 Curriculum Map							
	Ouerterd		Quarter 3 <u>Curriculu</u>	Im Map Feedback	1 0			A sector A
Chrushurse	Quarter 1		Quarter 2	Quai	rter 3	Linit C	6	luarter 4
and	Unit 1 Matter	Chemical	Unit 3 Motions and Stability	Unit 5 Heat and	Nuclear	Unit 7 Waves	Electromagneti	
Routines Week 1	3 Weeks	5 Weeks	9 Weeks	4 Weeks	3 Weeks	Energy 2	4	C Radiation
WOOKT		0 WCCR3	0 100000		JWEEKS	Weeks	Weeks	0 100013
			UNIT 5 Heat and Ele	ectricity [3 weeks]				
			Overarching	g Question				
			How is energy transfe	rred and conserved?				
Unit	Less	on Length	Essential C	Question		Voo	cabulary	
Unit 5			How is energy trans	ferred between objects or	Heat, te	emperature	, absolute z	ero, thermal
Heat and	8	8 davs	systems?		expansion,	specific he	at, calorime	ter, conduction,
Electricity					thermal co	nductor, the	ermal insula	tor, convection,
					convection current, radiation, thermodynamics			
Information			Instruction	Instructional Resources				
DCI			Learning Outcomes	ning Outcomes Curricular Resources				
PSCI.PS3: Energy			Define temperature.					
			Explain how thermal energy	Textbook Resources				
Standard(s)			related?	Glencoe Physical Science Chapter 5, Section 1:				
PSCI.PS3.2 Plan and conduct an investigation, to			What is the difference be and heat?	143: Section 2: Conduction, Convection, and				
provide evidence that thermal energy will move			How can you calculate o	Radiation pps 144-150				
as heat between objects of two different			energy?	Tradiation pps. 144-100				
temperatures, resulting in a more uniform energy			 Define conduction, conv 	Engage				
distribution (temperature) among the objects. *in conjunction with* PSCI.PS3.6 Determine the mathematical relationships among heat, mass, specific heat capacity, and temperature change using the			Contrast thermal conduct	tors and thermal	Teacher's Pet - The Flow of Energy: Heat			
			insulators.					
			Explain how thermal insu	ulators are used to control	Khan Acad	emy - Ther	mal conduc	tion convection
			the transfer of thermal en	nergy.	and radiation Thermodynamics			, <u> </u>
equation $\Omega = mCn\Lambda T$					Visual w/Activity: Brittle Balloon			
					Animation:	,		
			Suggested Phenomenon	tic transforred from a	Animation:			
Explanation and Support of Standard(s)			warmer object to a cooler	t is transierred from a				
PS3.2: Ther	mal energy is the	e energy of a system	warmer object to a cooler object. Explore					
due to the m	notion of the parti	icles in that system.						
Physical Science Shelby County Schoo								

One object can transfer its thermal energy to another object through the processes of heating or radiating. Convection and conduction are processes which require a physical medium to transfer the thermal energy. In the case of conduction, two objects are in direct contact, while convection transfers thermal energy through a liquid or gaseous medium. Radiation is a unique form of energy transfer which can transfer without a medium. One packet of this energy is called a photon. The energy of the photon determines the effect that it will have when it interacts with matter. Low energy photons such microwaves add to the motion of matter and result in an increase of the thermal energy. Photons carry energy from the sun to Earth. Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both guantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.

PS.3.6 Students use the algebraic descriptions of the initial and final energy state of the system, along with the energy flows to create a computational model that is based on the principle of the conservation of energy. Students use the computational model to calculate changes in the energy of one component of the system when changes in the energy of the other components and the energy flows are known.

Misconceptions

 The first law of thermodynamics states that when energy is transferred, it is conserved. Which has more thermal energy, an iceberg or a cup of hot coffee?

Mini Lab: Compare Thermal Conductors TE/SE p 149.

Virtual Lab: Insulation Properties Lab: Convection in Gases and Liquids TE/SE p. 151

Inquiry Lab: Passive Solar Heating TE/SE p. 154 **Mini Lab** Convery Energy TE/SE p. 156 **Lab:** Conduction in Gases TE/SE p. 160

Explain

Demo: Temperature and Convection TE/SE p. 145 **Quick Demo:** Compare Specific Heats TE/SE p. 141 **Quick Demo:** Observe Radiant Heat TE/SE p. 153

Elaborate

Practice Problems: Solve for Thermal Energy p.142.

Evaluate

Additional Resources

ACT Standard(s) Connection

SIN 403. Identify a control in an experiment SIN 404. Identify similarities and differences between experiments.

ACT Content Connection(s) Heat and work (PS) States, Classes and Properties of Matter (PS)

Shelby County Schools 2019-2020 14 of 24

- Students think that people close doors and windows to keep cold air out, but cold is the absence of heat. Therefore, people are trying to keep the heat inside.
- The second law of thermodynamics states that thermal energy is always transferred from a hotter object to a cooler object, dispersing the energy. The transfer of energy continues until the objects in contact are in thermal equilibrium (i.e., the same temperature).
- Thermal energy depends on mass and temperature. Temperature is a measure of the average kinetic energy of the particles in an object.
- Students might confuse radiation as a form of energy transfer with nuclear ration or radioactivity. In both cases, radiation involves sending out energy as electromagnetic waves. In nuclear radiation, radioactive nuclei of atoms break down and emit particles and electromagnetic waves. In thermal radiation, matter emits electromagnetic waves of a much lower frequency.

Suggested Science and Engineering Practice Asking and developing solutions

Students ask questions to describe the relationship between hear, temperature, and thermal energy.

Plan and conduct an investigation

Students will plan and carry out an investigation to provide evidence to support the fact that heat is moving thermal energy proportional to temperature.

Suggested Crosscutting Concept Energy and Matter

Q3 Physical Science

Shelby County Schools 2019-2020 15 of 24

Students demonstrate and explain conservation	
of mass and energy in systems, including	
Cause and Effect	
Students use cause and effect models at one scale to make predictions about the behavior of	
systems at different scales.	

	Physical Science Quarter 3 Curriculum Map								
		Qua	rter 3 Curriculum Map F	eedback					
	Quarter 1		Quarter 2		Quarter 3		(Quarter 4	
Structur Routi	Structures and Unit 1 Routines Matter		Unit 3 Motions and Stability	Unit 4 Energy and Machines	Unit 5 Heat and Electricity	Unit 6 Nuclear Energy	Unit 7 Waves	Unit 8 Electromagneti c Radiation	
Wee	ek 1 3 Weeks	5 Weeks	9 Weeks	4 Weeks	3 Weeks	2 Weeks	4 Weeks	5 Weeks	
		UN	T 5 Heat and Electricity [3 weeks]					
			Overarching Questio	n					
		Hov	v is energy transferred and co	onserved?					
Unit	Lesson Length		Essential Question(s) Voc			cabulary			
Unit 5 Heat and Electricity	8 days	is the difference between co ators? does Ohm's law relate currer ence, and resistance?	nductors and it, voltage	 Charging by contact, charging by induction conductor, electric field, electroscope, insula law of conservation of charge, static electric Ohm's law, electric circuit, electric current, resist voltage difference, electrical power, parallel ci series circuit 			by induction, cope, insulator, tatic electricity, irrent, resistance, r, parallel circuit,		
Standards and Related Background Information		Instructional Focus Instruction			Instructio	nal Resou	rces		
DCI PSCI.PS3: Energy Standard(s)		Learning Ou Cons appl resis (V=II	 Construct circuit diagrams and solve application problems related to voltage, resistance, and current in a series circuit (V=IR). 		Curricular Resources <u>Textbook Resources</u> Glencoe Physical Science, Chapter 6 Electricity pps. 170 - 191				
Physical Science	ce							Shelby County Scho	

PSCI.PS3.7 Demonstrate Ohm's Law through the design and construction of simple series and parallel circuits.

Explanation

Ohm's law relates the current through a device or portion of a circuit to the voltage drop observed across that device. The voltage drop across a device will increase in a linear fashion as the current through that device is increased. The resistance of the device is given by the ratio of voltage drop to current across the device. In an ohmic device, this ratio will be constant. Simple, single-loop circuits may be analyzed by considering each resistor as part of the total (equivalent) resistance of the circuit. (It may be beneficial to describe non-ohmic devices, but such devices are beyond the scope of this standard.)

Misconceptions

- Students might confuse radiation as a form of energy transfer with nuclear ration or radioactivity. In both cases, radiation involves sending out energy as electromagnetic waves. In nuclear radiation, radioactive nuclei of atoms break down and emit particles and electromagnetic waves. In thermal radiation, matter emits electromagnetic waves of a much lower frequency.
- Students might believe that positive charges flow through wires; however, it is negatively charged electrons that flow in a wire.

• Analyze factors that affect the strength and direction of electric forces and fields.

- Describe how electric charges are transferred and explain why electric discharges occur.
- Describe electric current and identify the two types of current.
- Describe conduction and classify materials as good electrical conductor or good electrical insulators.
- Explain how voltage produces electric current.
- Calculate voltage, current, and resistance using Ohm's law.
- Analyze circuit diagrams for series circuits and parallel circuits.

Suggested Phenomenon Power Supplied to Electrical Heater

The electrical heater is a commonly used appliance in winters. Provided with the resistance of heater coil and applied voltage, We can <u>calculate the power</u> <u>supplied</u> to this heater. Let's assume that resistance of heater coil is 5 ohm and input voltages are 120V. We can use the <u>formula from Ohmic Wheel</u>: $P = V_2/R$ to find the power, $P = 120_2/5$ ohm = 2880 watt. This Engage

Explore

Explain

Elaborate

Evaluate

Additional Resources

PSCI.PS3.7: Circuits, Ohms Law Lesson and Appendices

- Students develop and use a model to explain how energy flows through the created circuit.
- Students obtain, evaluate, and communicate what parts of a system must be present to produce energy flow in a circuit.
- Students use mathematics and computational thinking to determine the directly proportional and inversely proportional relationships in Ohm's Law and complete calculations using the formula.

ACT Standard(s) Connection

EMI 403. Determine which models imply certain information

ACT Content Connection(s) Electrical Circuits (PS)

• When it comes to static electricity, a walk	power can then be multiplied with time to calculate	
across a carpet floor can generate a spark	the electricity bill at our premises.	
of 1500 volts or more; however, the		
electric current in the situation is low.		
Electric current poses the true danger not		
the voltage.		
Students should understand that many		
alternative energy resources are ideal for		
use in certain geographic areas, on a		
small scale in rural areas, or in developing		
societies.		r
Suggested Science and Engineering		
Practice Develop and use models		
Students can develop and use models to		
explain circuit diagrams and build a working		
circuit.		
Mathematical and computational thinking		
Student will use mathematical and		
computational thinking to solve for each		
variable in ohm's law independently.		
Suggested Crosscutting Concept		
Patterns		
scales at which a system is studied and can		
provide evidence for causality in explanations of		
phenomena.		

Physical Science Quarter 3 Curriculum Map Quarter 3 Curriculum Map Feedback					
	Quarter 1	Quarter 2	Quarter 3	Quarter 4	
Q3 Physical Science				Shelby County Schools 2019-2020 18 of 24	

	Structur Routi Wee	res and ines ek 1	Unit 1 Matter 3 Weeks	Unit 2 Chemical Reactions 5 Weeks	Unit 3 Motions and Stability 9 Weeks	Unit 4 Energy and Machines 4 Weeks	Unit 5 Heat and Electricity 3 Weeks	Unit 6 Nuclear Energy 2 Weeks	Unit 7 Waves 4 Weeks	Unit 8 Electromagneti c Radiation 5 Weeks
				UNI	T 5 Heat and Electricity [3 weeks]				
-				How	v is energy transferred and co	(<u>s)</u> onserved?				
	Unit	L	esson Length	Essential Question(s)			Vocabulary			
	Unit 5 Heat and Electricity		4 days	 How do moving electric charges and magnets interact? What is the electromagnetic force? How do an electromagnet's properties affect its magnetic field strength? How does an electric motor operate? 			Electric current, electromagnetic force, electromagnetism, electromagnet, galvanometer, electric motor, solenoid			
	Standards and Related Background Information				Instructional Focus		Instructional Resources			rces
03 6	DCI PSCI.PS3: Energy Standard(s) PSCI.PS2.7 Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field. Explanation Ohm's law relates the current through a device or portion of a circuit to the voltage drop observed across that device. The voltage drop across a device will increase in a linear fashion as the current through that device is increased. The resistance of the device is given by the ratio of voltage drop to current across the device. In an ohmic device, this ratio will be constant. Simple, single-loop circuits may be analyzed by considering each			Learning Ou Plan evide produ Cons evide field Suggested F A compact is the field	and conduct an investigati ence that an electric current uce a magnetic field. struct an explanation using ence, for the production of a by an electric current. Phenomenon	on to collect t can (collected) a magnetic	Instructional Resources Curricular Resources Textbook Resources Glencoe Physical Science, Chapter 7 Section Electricity and Magnetism pp. 211 Engage Quick Demo: Electromagnets TE/SE pp. 210 Khan Academy: Introduction to Magnetism Explore Mini Lab: Observe Fields TE/SE pp. 211 Evaluate Section 2 Review; TE/SE pp. 215 Additional Resources ACT Standard(s) Connection			se pp. 210 gnetism pp. 211
Q3 F	hysical Science	ce		M						Shelby County Scho

elby County Schools 2019-2020 19 of 24 resistor as part of the total (equivalent) resistance of the circuit. (It may be beneficial to describe non-ohmic devices, but such devices are beyond the scope of this standard.)

Misconceptions

- Electricity and magnetism are two aspects of a single force, the electromagnetic force.
 Electromagnetic waves consist of magnetic and electric fields oscillating at right angles to each other.
- The right-hand rule can be used to determine the direction of the magnetic field.
- Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
- When a wire carries a strong, steady current, the needles of any compasses nearby move to align with the magnetic field created by the electric current.

Suggested Science and Engineering Practice

Plan and conduct an investigation

Construct an explanation

Suggested Crosscutting Concept Systems and System Models Cause and Effect

EMI 401. Determine which simple hypothesis, prediction, or conclusion is, or is not, consistent with a data presentation, model, or piece of information in text.

ACT Content Connection(s) Electrical Circuits (PS) Magnetism (PS)

Q3 Physical Science

Shelby County Schools 2019-2020 20 of 24

Physical Science Quarter 3 Curriculum Map									
	Quarter 3 <u>Curriculum Map Feedback</u>								
Quarter 1			Quarter 2	uarter 3		Quarter 4			
Structures	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	
and	Matter	Chemical Reactions	Motions and Stability	Energy and	Heat and	Nuclear	Waves	Electromagnetic	
Routine	0.11/	E 147 - 1		Machines	Electricity	Energy	4.147	Radiation	
Week 1	3 Weeks	5 Weeks	9 Weeks	4 Weeks	3 Weeks	2 Weeks	4 Weeks	5 Weeks	
			UNIT 6 Nuclear Ener	gy [2 weeks]					
			<u>Overarching Qu</u>	estion(s)			-		
			How do tood and tuel p If energy is conserved, why do people	rovide energy? e sav it is produced or	used?				
Unit	Lesso	n Length	Essential Questic	on(s)	Vocabularv				
			• What are fusion and fission?	· · · · · ·					
Unit 6	40	1	How does a nuclear reactor c	onvert nuclear energy	Fission, fusion, nuclear reactor, nuclear waste				
Nuclear	10	days	into thermal energy?	diacduantages of					
Energy			 what are the advantages and using nuclear energy to gener 						
Standards and Related Background			Instructional Focus In			Instructio	structional Resources		
DCI PSCLPS1: N	Matter & Its Interac	tions	Learning Outcomes Distinguish between fission ar	nd fusion	Curricular Resources				
Standard(s) PSCI.PS1.14 Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.			 Develop and use models to ill the atomic nucleus before and fusion. Construct an explanation of th structure and radioactive deca Ask questions and define prot construction and design of a r Research a nuclear power place 	Textbook Resources Glencoe Physical Science, Chapter 8 Section 2 Nuclear Energy pps. 241 - 247 Engage BrainPOP Nuclear Energy Quick Demo Nuclear Fuel Pellets TE/SE p. 242 Porgenan Science Nuclear Fuel Pellets TE/SE p. 242					
information about nuclear energy and radioactive isotopes with respect to their impact on society.			Determine if a contaminated r reclaimed. Suggested Phenomenon	Explore Make a Model – Reactor Core					
To build an understanding of nuclear processes, students should attribute the existence of the nucleus and nuclear stability to neutrons and the strong nuclear force. The process of fusion is facilitated when two nuclei are forced near one another to the point where strong nuclear forces					Apply Science p. 246 Elaborate	e – Can a contar	minated radioad	ctive site be reclaimed?	
Q3 Physical S	cience						S	Shelby County Schools	

Q3 Physical Science

Shelby County Schools 2019-2020 21 of 24

exceed repulsive electromagnetic forces. Due the random movements of nucleons, decay processes are also random but can be charted exhibiting consistent patterns. These patterns are useful in radiometric dating on varying scales

Misconceptions

• The water that is used as a coolant in a nuclear reactor core becomes contaminated with radioactive material. This water is not the same water that is cooled and released into rivers and streams. The water that is released into the environment does not come into direct contact with the reactor core or water that cools the reactor core. It exchanges heat with the contaminated water through a heat exchanger.

Suggested Science and Engineering Practice Developing and using models

Students create models which are responsive and incorporate features that are not visible in the natural world but have implications on the behavior of the modeled systems and can identify limitations of their models.

Obtaining, evaluating, and communicating information Students can critically read scientific literature, integrating, extracting, and accurately simplifying main ideas from multiple sources while maintaining accuracy and validating data whenever possible. Students can provide written and oral explanations for phenomena and multipart systems using models, graphs, data tables, and diagrams.

Suggested Crosscutting Concept Cause and Effect

Students use cause and effect models at one scale to make predictions about the behavior of systems at different scales.

Energy and Matter

Students reconcile conservation of mass in nuclear processes.

Option A: Nuclear fission can be controlled and used to generate electricity.

Option B: Nuclear fusion is the process happening in stars, including the sun, to produce energy.

Evaluate

Additional Resources The Tennessee Valley Authority (TVA)

TVA's overarching Environmental Policy is to produce clean, reliable and affordable power, support sustainable economic growth in the Tennessee Valley and promote proactive environmental sustainability in a balanced and ecologically sound manner.

As a good steward, it is TVA's duty to promote the proper use of the Tennessee River watershed and its natural resources by the public. They are committed to sustainability and continuous improvement, proactive stewardship in managing our natural resources and environmental footprint and maintaining compliance with all applicable environmental and legal requirements.

ACT Standard(s) Connection

EMI 502. Determine whether presented information or new information, supports or contradicts a simple hypothesis or conclusion, and why.

ACT Content Connection(s)

Atomic Structure (PS)

Q3 Physical Science

Shelby County Schools 2019-2020 22 of 24

Q3 Physical Science

Shelby County Schools 2019-2020 23 of 24

Textbook Resources	DCIs and Standar	ds Videos	Additional
Textbook	DCI	Videos ACT & Khan Academy Imit The Act Communications (NCTM) Discovery Education Standa The Futures Channel SAT Communications The Teaching Channel SAT Pr Teachertube.com SAT Pr	SAT ACT Information & Resources ollege & Career Readiness Mathematics rds onnections ractice from Khan Academy